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Abstract—Adaptive filters generally employed for estimation
purposes require high computational power when it comes to
real time estimation. Therefore, in this paper we propose a
computationally light yet effective estimation algorithm based on
state space model. Our algorithm has been employed successfully
in linear and non linear state space model based estimation
problems. We investigate few examples to demonstrate the novelty
of our algorithm by comparison with few existing algorithms
in presence of non Gaussian noise namely uniform noise. More
specifically, the state space normalized least mean squares and
the Kalman filter has been compared with our algorithm.

Index Terms—SSLMF, SSNLMS, State Space Least Mean
Fourth, State Estimation Algorithm

I. INTRODUCTION

Advancements in computational speed, complexity and
power efficiency of digital processors have assisted in adaptive
filters gaining widespread acceptance and implementations
in numerous fields. Adaptive filters provide an upper hand
in comparison to conventional filters because of their ability
to adapt by self adjusting filter parameters according to the
optimization algorithm utilized ([1],[2]). Two of the most
widely used adaptive filtering algorithms are the least mean
squares (LMS) algorithm ([1],[2],[3]) and the recursive least
squares (RLS) algorithm ([1],[2],[3]). The state space (SS)
version of these algorithms have been developed and presented
by Malik et al. ([4],[5],[6],[7]) and different analyses were
presented.

Adaptive filters dealing with SS model of a system yields
near true results compared to non model based systems
because of the availability of prior knowledge of the states
via the system model. Numerous adaptive filtering algorithms
can be found in the literature addressing the problem of
SS based models for example the very well known Kalman
filter (KF) [8], which gives the linear optimal solution by
calculating the Minimum Mean Square Error (MMSE).
Using observations subject to noise and other disturbances, it
optimally estimates the system parameters. In the domain of
non linear filtering, we have the extended Kalman filter (EKF)
[8], unscented Kalman filter (UKF) [9], cubature Kalman
filter (CKF) [10], quadrature Kalman filter (QKF) [11] and
many other variants of KF [8]. These non linear filtering
algorithms are computationally computationally complex and
therefore pose difficulties in real time filtering problems due
to high computational requirement. In this paper we propose
and investigate the state space least mean fourth (SSLMF)
algorithm by defining a cost function J[𝑘] and minimizing
it. We also compare our performance with the existing state

space normalized least mean square (SSNLMS) algorithm [4]
and KF algorithm [8]. Our proposed algorithm is superior
due to the fact that it requires lesser computations per
iteration compared to the existing linear and non linear model
based algorithms (KF, UKF, EKF, CKF, QKF, etc.). The
performance of the algorithm in presence of non Gaussian
noise namely uniform noise is investigated due to the fact
that least mean fourth (LMF) algorithm performs better in
non Gaussian noise environments [12].

The paper is organized as such, Section II of the paper
introduces the State-Space model. Then in Section III the
overview of the existing SSLNMS is presented following
Section IV where the SSLMF algorithm is developed. Section
V presents simulation and results of the comparison of and
proposed algorithm keeping in view the mean square errors.
And finally we conclude the paper in Section VI.

II. STATE-SPACE MODEL

We begin by defining the general state-space model of a
linear time varying system.

x[𝑘 + 1] = A[𝑘]x[𝑘] +B[𝑘]u[𝑘] +w[𝑘], (1a)

y[𝑘] = C[𝑘]x[𝑘] +D[𝑘]u[𝑘] + v[𝑘] (1b)

where x ∈ ℜ𝑛 are the process states, y ∈ ℜ𝑚 are the
measured outputs such that 𝑚 ≤ 𝑛. A[𝑘] is the state transition
matrix, B[𝑘] is the input matrix, u[𝑘] is the input vector
where u ∈ ℜ𝑝, w ∈ ℜ𝑛 is the process noise vector and
v ∈ ℜ𝑚 is the measurement noise vector. The matrix C[𝑘] is
the output matrix where dim[C[𝑘]] = 𝑚×𝑛, D[𝑘] is the feed
through matrix with dim[D[𝑘]] = 𝑚 × 𝑝. It is assumed that
the above system is observable. A special case is the unforced
(autonomous) linear time varying system, represented as

x[𝑘 + 1] = A[𝑘]x[𝑘] +w[𝑘], (2a)

y[𝑘] = C[𝑘]x[𝑘] + v[𝑘] (2b)

The state space representation for a non linear continuous time
system is

ẋ = 𝑓(x,u,w), (3a)

y = ℎ(x,u,v) (3b)

where 𝑓 and ℎ are non linear functions and the parameters are
as defined before.

III. OVERVIEW OF THE EXISTING SSNLMS

Considering the system described by equation (2). A model
based adaptive estimation process can be divided into the
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following two steps. Step 1, the time update which is given
by

x̄[𝑘] = A[𝑘 − 1]x̂[𝑘 − 1] (4)

Step 2, the measurement update which is given by

x̂[𝑘] = x̄[𝑘] +K[𝑘]𝜀[𝑘] (5)

where

𝜀[𝑘] = y[𝑘]− ȳ[𝑘] (6)

here y[𝑘] is as mentioned in (2), K[k] is the gain matrix and

ȳ[𝑘] = C[𝑘]x̄[𝑘] (7)

This is basically the structure employed in all Kalman Filtering
techniques ([8],[9],[10],[11], etc.). In the case of SSNLMS [4]
the gain matrix K[𝑘] is derived as follows

e[𝑘] = y[𝑘]− ŷ[𝑘] = 𝜀[𝑘]−C[𝑘]𝛿[𝑘] (8)

where

𝛿[𝑘] = x̂[𝑘]− x̄[𝑘] (9)

Assuming C[𝑘] is full rank, x̂[𝑘] is chosen such that e[𝑘] = 0
which implies the following

𝜀[𝑘] = C[𝑘]𝛿[𝑘] (10)

𝛿[𝑘] is chosen as the minimum norm solution of the above
equation which results in

𝛿[𝑘] = C𝑇 [𝑘](C[𝑘]C𝑇 [𝑘])−1𝜀[𝑘] (11)

here

K[𝑘] = C𝑇 [𝑘](C[𝑘]C𝑇 [𝑘])−1 (12)

The estimator equation from (9) and (11) is hence derived as

x̂[𝑘] = x̄[𝑘] +C𝑇 [𝑘](C[𝑘]C𝑇 [𝑘])−1𝜀[𝑘] (13)

This is termed in ([4],[5]) as the SSNLMS algorithm. However,
to avoid the non invertible scenario of (C[𝑘]C𝑇 [𝑘])−1, a small
value 𝛾 might be added to the term and hence the estimator
can be represented as

x̂[𝑘] = x̄[𝑘] +C𝑇 [𝑘](𝛾 +C[𝑘]C𝑇 [𝑘])−1𝜀[𝑘] (14)

The above estimator may be unstable and there are no known
conditions for stability and hence convergence is not guaran-
teed. Therefore, a matrix G has been introduced in ([4],[5])
to overcome this problem. In ([4],[5]), it is claimed that the
choice of this matrix G depends on the nature of the problem
and one simple approach is to take G to be all zeros except for
the first column to have non zero entries. In our investigation,
we will consider the SSNLMS algorithm ([4],[5]) defined as

x̂[𝑘] = x̄[𝑘] + 𝜇GC𝑇 [𝑘](𝛾 +C[𝑘]C𝑇 [𝑘])−1𝜀[𝑘] (15)

𝜇 is the step size parameter for quicker achievement of
convergence.

IV. DERIVATION OF SSLMF

Considering the class of adaptive filtering based on (5)
which is employed in all KF techniques, this type of update
equation can be generalized with the following update rule

x̂[𝑘] = x̄[𝑘]− 𝜇∇J[𝑘] (16)

where J[𝑘] is the cost function to be minimized, ∇J[𝑘] is
the gradient and 𝜇 is the step size parameter. To derive the
SSLMF, we start by defining the cost function as

J[𝑘] = E
[∥𝜀[𝑘]∥4] (17)

Minimizing the cost function J[𝑘] with respect to the predicted
states x̄[𝑘] result in

∇J[𝑘] = −4∥𝜀[𝑘]∥2C𝑇 [𝑘]𝜀[𝑘] (18)

Equation (16) can therefore be written as

x̂[𝑘] = x̄[𝑘] + 𝜇G∥𝜀[𝑘]∥2C𝑇 [𝑘]𝜀[𝑘] (19)

which is our general estimator algorithm.Comparing equations
(5) and (19) yields

K[𝑘] = 𝜇G∥𝜀[𝑘]∥2C𝑇 [𝑘] (20)

Matrix G was imposed for the condition of controllability
([4],[5]) which is required due to the dynamics of the system
where the algorithm is being applied.

V. SIMULATION RESULTS & DISCUSSION

Simulation results are presented here to validate the per-
formance of the algorithm. We perform the estimation of
the state parameters of a noisy sinusoid tracking problem, a
real time trajectory tracking problem and the state parameters
of a Van der poll oscillator ([4],[13]). These problems were
investigated in the presence of uniform noise. The process
and observation error covariance matrices were chosen to be
similar to the noise covariances. An overview of the root mean
square error (RMSE) of the output observations can be referred
to in Table I. SSNLMS, KF, and SSLMF were compared. 100
simulations were performed while the estimation algorithms
ran simultaneously.

A. Example 1. Tracking Sinusoids

In the first example we consider the system reported in
([4],[5]). More specifically we investigate a second order
transversal filter with known frequency and unknown phase
and amplitude of sinusoids which produces a 4𝑡ℎ order system
given by

A[𝑘] = diag

{[
cos(𝜔𝑖𝑇 ) sin(𝜔𝑖𝑇 )
− sin(𝜔𝑖𝑇 ) cos(𝜔𝑖𝑇 )

]}
, 𝑖 = 1, 2 (21a)

B[𝑘] =
[
1 1 1 1

]𝑇
(21b)

C[𝑘] =
[
1 0 1 0

]
(21c)

The 𝜔𝑖’s for this system are known and kept constant. For
the purpose of our study, we have set the values of the
frequencies 𝜔1, 𝜔2 to 0.5 and 0.25 respectively. The sampling
time is considered as 𝑇 = 0.1𝑠 and 𝜇 for SSNLMS was
taken as 0.05 whereas, 𝜇 for SSLMF was chosen as 300. The
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observation is subject to uniform noise of covariance 𝜎2 =
0.012. The process noise was considered to be of covariance
𝜎2 = 0.0012. The actual initial system states were considered
to be x[0] = [0.1 0.1 0.1 0.1]𝑇 , and the initial estimate for
tracking were chosen to be x̂[0] = [0.15 0.2 0.05 0.16]𝑇 .
The plot of observation and the mean square observation error
are presented in Figure 1 and Figure 2 respectively. It is
observed from Figure 1 that SSLMF performs better in terms
of observation. A closer look at Figure 2 reveals that SSLMF
maintains a lower level of observation error, while KF has
the lowest. However, KF is computationally complex and thus
state space least mean algorithms have an advantage due to
their light computational requirement. Table I shows that the
root mean square observation error for SSLMF is lower than
that of SSNLMS and hence performed better than SSNLMS.
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Fig. 1: Observation y[k].
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Fig. 2: Mean Square Observation Error y[k]

B. Example 2. Real time tracking

Considering the example of real time tracking ([8],[5]), the
state space representation is as follows

x[𝑘 + 1] =

⎡
⎣1 𝑇 𝑇 2/2
0 1 𝑇
0 0 1

⎤
⎦x[𝑘] (22a)

𝑦[𝑘] =
[
1 0 0

]
x[𝑘] (22b)

The sampling time 𝑇 is taken as 0.01s. The initial true state
was considered as x[0] = [0.4 0.3 0.4]𝑇 and the initial
state for the estimation algorithms were chosen as x̂[0] =
[0.2 0.1 0.4]𝑇 . The observation was subject to uniform noise of
covariance 𝜎2 = 0.12 and the process noise was considered to
be of covariance 𝜎2 = 0.012. Figure 3 presents the observation
plot while Figure 4 presents the mean square observation error.
It was observed that both algorithms effectively estimate the

states. However, SSLMF converges fast than SSNLMS which
can be observed in 4. Referring to I, it can be confirmed that
SSLMF performed better than SSNLMS.
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Fig. 3: Observation y[k]
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Fig. 4: Mean Square Observation Error y[k]

C. Example 3. Van der poll oscillator

In this example we consider the commonly used Van der poll
oscillator which is a highly nonlinear system exhibiting both
stable and unstable limit cycles [14]. We consider the case of
stable limit cycle therefore, as time proceeds the system states
converge to zero. The system is represented by the following
differential equations ([13],[14])

�̇�1 = −𝑥2 (23a)

�̇�2 = 𝑥1 − 𝛼(1− 𝑥1
2)𝑥2 (23b)

here 𝛼 = 0.2 and the system has been discretized with a
sampling time of 0.01s. The state space representation is as
follows

x′(𝑡) =
[
0 −1

1 −𝛼(1− 𝑥1(𝑡)
2
)

]
x(𝑡) (24a)

y(𝑡) =

[
1 0
0 1

]
x(𝑡) (24b)

𝜇 for the SSNLMS was chosen as 0.1 and 𝜇 for SSLMF as 0.7.
The observation was subject to uniform noise of covariance
𝜎2 = 0.012 and the process noise was considered to be of
covariance 𝜎2 = 0.0012. The system was simulated with initial
system states to be x[0] = [1.4 0]𝑇 , and the initial estimate
for the algorithms were chosen to be x̂[0] = [1.3 0.2]𝑇 .
The observations and the mean square observation error is
presented in Figure 5 and Figure 6 respectively. It can be
observed from I that the observation error remains lower
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for SSLMF in comparison to SSNLMS. Moreover, SSLMF
converges faster compared to SSNLMS.
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Fig. 5: Observation 𝑦1[𝑘] and 𝑦2[𝑘].
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Fig. 6: Mean Square Observation Error for 𝑦1[𝑘] and 𝑦2[𝑘].

It is clear from the study that SSLMF indeed is a novel
technique for estimation. Moreover, it is computationally very
light when compared to other model based techniques like
KF, EKF, UKF, etc. Our study reveals that SSLMF can be
effectively utilized in non Gaussian noise environments.

TABLE I: Root Mean Square Error

VI. CONCLUSION

In this paper the novel SSLMF algorithm has been proposed
and investigated. The proposed algorithm is efficient and
computationally light compared to existing model based linear
and non linear estimation techniques (KF, EKF, UKF, etc.).
Three different examples were investigated where SSLMF
performed better than the SSNLMS and showed acceptable
performance in comparison to KF keeping in mind the fact
that KF is highly intensive in computation. For further studies
SSLMF for Gussian noise environments can be proposed and
investigated along with time varying step size parameters or
hybrid algorithms for yet better results.
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